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of operation. This is done so that there will
be minimal radiation loss via such a parallel
plate mode in the region of coupling between
closed rectangular waveguide and the open
groove guide structure. The second step
consists of increasing this dimension from
the reduced value to the final value for the
groove guide design. It should be noted that
the plate separation in the groove region is
equal to the wide dimension of rectangular
waveguide. This was done solely as a matter
of convenience.

Standard laboratory measurements of
transducer insertion loss and input VSWR
have been made, utilizing a sliding short in
groove guide and substitution techniques,
and the results are shown in Fig. 2. The
physical length of the transducer, which was
not optimized, accounts for approximately
0.2 dB of the insertion loss. It is felt, there-
fore, that a more efficient coupling design
would reduce the coupling length (now ap-
proximately 20 wavelengths) by a factor of
two and thereby reduce the insertion loss to
a value below 0.2 dB over the entire fre-
quency range. Thus, the transducer insertion
loss would be equivalent to less than six
inches of rectangular waveguide operating
in the same frequency range.

It has been shown [1]~[5] that the dis-
spersion relation for groove guide has the
familiar form

N S
M AN
‘/ 1 - (*)
A
where
27
)\c = k—c 3

where £,4 is the y-directed wavenumber in
the groove region and | kyp| is the y-directed
wavenumber in the outer region giving the
decay rate in nepers per unit length (in ).
Now kya and/or |k,z| are determined by
the transverse procedure for a structure with
specific dimensions. An experimental con-
firmation of the approximate theory was
obtained for the case a/b=3 using a groove
guide tunable reaction type cavity having
5=0.2800 inch and 5"=0.270 inch and a
plate width of approximately 5 inches.

The cavity was excited by a capacitive
iris in a transverse shorting plate at the
input end and terminated in a shorting plate
whose longitudinal position could be ad-
justed. The guide wavelength at any fre-
quency was determined by measuring the
distance between successive resonant posi-
tions of the tunable short. In Table I various
values of guide wavelength are compared at
a number of frequencies. The first two
columns of guide wavelength permit a com-
parison of the measured values with those
theoretically calculated. In the last column
are predicted values of A, for a parallel plate
mode if it were to exist rather than the
bound groove guide mode. It is easily seen
that the measured values of guide wave-

CORRESPONDENCE

Fig. 1. Rectangular to groove guide transducer.
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Fig. 2. Transducer performance.
TABLE I
Measured Calculated | Calculated
f(Gce/s) Ay (inches) A, (inches) Ag{inches)
G.G. G.G. P.P.
27.62 0 6803 0.6763 0.7055
28.82 0 6156 0.6117 0 6330
30.02 0.5622 0.5608 0.5771
31.96 0 5002 0.4974 0.5086
33.90 0 4492 0.4490 0.4572
35.86 0 4092 0.4102 0.4165
38.00 0.3774 0 3759 0.3807
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Fig. 3. Attenuation vs. frequency; groove guide no. 2

(machined brass); (¢ =0.140 inch, b =0.280 inch,
b’=0.250 inch, d =5.0 inch).

length correspond to the predicted values
for groove guide and at the same time differ
greatly from the values predicted for parallel
plate guide.

The attenuation constant was measured
using the groove guide sliding short and
substitution. The groove guide wunder
measurement was fabricated from machined
brass and is shown in Fig. 3 with the experi-
mental results.

JouN M. Ruppy
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Field Equations in Cylindrical
Coordinates for Gyroelectric
Media with Sources

For a gyroelectric medium characterized
by a tensorial relative permittivity of the
form

[ EKEu jKn O _l
K=|—jKi Ku O

0 0 K33J

Maxwell's equations may be written as
VX H =Tty +Teo + joesk - E
vV X E = Jom: + 7tm - ]wﬂoﬁ

where both electric and magnetic currents,
designated by subscripts ¢ and m, respec-
tively, have been included. The currents
have been separated into longitudinal and
transverse components, designated by sub-
script z and ¢, respectively, with 4, repre-
senting a unit vector in the longitudinal
direction. Throughout it is assumed that
the fields and the currents have a time and
z variation of the form

exp (ol — vz).

Through the use of vector and tensor
algebra, these two equations can be reduced
to a set of wave equations which are in
general coupled [1]. In matrix form they
can be written as

VEF + AF =J. @
F and J are both two-dimensional vectors
E] J = J‘].
H, Jo
A is a 2X2 matrix having elements a1, @12,

a,1, and asy; and V; is the transverse part of
the del operator

F =

J _
Vi=V — — .
93

Defining
ko? = wuyen
k2= — k®Kie
and

k? = 2 - k®Kuy

Manuscript received March 19, 1965; revised
August 3, 1965.
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then where p;2 and p2? are two solutions of the On the Superheterodyne Method
an = k*Ks/Kn characteristic equation of 4 of Microwave Noise Measurements
a1 = — wpoyKn/Kn det (4 — p) = 0. < One of the frequently used methods in
an = weryK1Kau/Ku Making such a transformation (1) becomes ~ ‘microwave oscillator noise measurements is

aze = k% + k2K19/Kn1.

The currents J; and J, are divided into
two parts, one part arising from the lon-
gitudinal currents and the other part from
the transverse currents

Jr=J+Ju

where

j k* ae
]1z=i‘[ ]ze—_l-,zm]
w €0K11 Mo

and

_ R
]1,=Vt-|:122><];m—j = Jte:l-
weo K1y

Similarly
Je=Ju+Ju
where
J
Jop = — — [azgjzm + al?"“]
Wiko
and

I
Jou=Ve| . X e —j—Jeeti—Tin |-
Ku whtg
The transverse fields can be expressed in
terms of the longitudinal fields and trans-
verse currents as follows:

1
= m {Vi(—vB2E, — wpoki2H.)

+ §1 X Vil yRr2E, -+ wpok?H)
+ 8, X (YR T i + wopoli®™ 10)
+ flouck T e + v T m) } (2a)

bl

£

— 1
Ty = e {Vi(—#°H, + vioeoK1Es
¢ (k4—k14){ (=R H, + VweK12L)

+ jii, X Vilyhi2H, — we(B12K 12

+ BK11)E.]

+ 4, X (v o — weey Kiod im)

+ T e — weo(k1?Kys

+ k2K11)7¢m]} . (2b)

If a12=a2=0 then (1) represents two
uncoupled equations which can be solved
for E, and H,; these expressions for E, and
H, can be used in (2a) and (2b) to determine
the transverse fields. The matrix elements
¢12 and ag are both zero if Ki9=0 or v=0.

If @12 and a@s; are not both zero, then (1)
can be uncoupled by a suitable linear trans-
formation of the form

F=TU 3

where 7" is a 2X2 matrix and U is a two-
dimensional vector.

Substituting (3) into (1) and premulti-
plying by 71 gives

VETWTU 4 T7ATU = T-V.

Using the theory of similarity trans-
formations, it is possible to find a matrix T
which will diagonalize the matrix 4, giving

T7UAT = D(p:?, p2b)

VAU + Dip:t pAU = TV, ©)

Solutions of (4) are available in the literature
in terms of the elements of K [2].

If neither @12 nor as are zero, and if
pi¥#£ps?, then an appropriate matrix T,
giving the same transformation used by
Kales [3] in a similar derivation for a source
free ferrite, is

I_(Pl2 — am) Pt (p? — 022)P22~|
T = a2
L e ]

the inverse of which is

‘— a9 (p2® ~ az)
pA(p — pa?)  p(pt — i)
23 1% — aa _l
Dpt(pa? — pi?) pP(pi® — pe?)
The longitudinal fields are now obtain-
able from the solutions of (5) through the
use of (3). The transverse field expressions

written in terms of the solutions of (5) and
the transverse currents are

T-1=

Et=

Vi(k2 = p UL+ (B — p) U]

wepL 12

+ Joptt, X V(Ui + Us)

+ X (vEET i + wopeki®T 1)

§ .
Bt
~+ jloouok™ e + 'Yk12-7tm)}
Kn

— i,
YK 12
X Vz[(P12 — o) Ur + (po? — aa) U2]

Hi=— (Ui + Uy —3j

1 - -
+ m {Mz X (vk% 1o — weyy 2K 10T 1m)

+ jllitvT e — weo(ki2Knz + k2K 1) T i)}

Making a transformation from a gyro-
electric medium to a gyromagnetic medium
the equations presented here reduce to those
obtained by Rosenbaum and Coleman [4]
for a ferrite containing longitudinal electric
currents only.
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University of Illinois, Urbana, with Profs.
P. D. Coleman and R. Mittra.
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the superheterodyne method. This corre-
spondence is not intended to describe this
method in detail, but to call attention to the
possibility of pointing out one measurement
error. Every one who is interested in micro-
wave oscillator measurements can find
fundamental information given in [1].

The superheterodyne method is assumed
to be a substitution method, and therefore
it is not necessary to know the mixer crystal
noise [1], [2]. It will be shown that some
conditions have to be fulfilled if the super-
heterodyne method is to become a sub-
stitution method which gives correct values
of the oscillator noise power.
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Fig. 1. Schematic diagram of the superheterodyne

method noise measuring circuit.

The schematic diagram of the noise
measuring equipment is given in Fig. 1.
When the oscillator under test is connected
to the input of the superheterodyne re-
ceiver [case (a)], it produces a reading on
the output meter

N,
= c [ a 1)12
M (LGA1+N1+N)G N

where

N,=noise power of the oscillator under
test
N;i=noise power contributed by the
mixer crystals for the case (a)
N, =noise power contributed by the IF
amplifier
G, =amplifier gain
L,=conversion loss of mixer crystals
Aj=attenuation factor of the standard
attenuator in the oscillator arm.

When the tested oscillator is removed and
a known amount of noise from the noise
source is added [case (b)] the reading is

N,
= —l_ ¢ a a 2
N, c2+N2+N)G 2)

where

N,=output noise power of the noise
source

N.,s=noise power contributed by the
mixer crystals for case (b)

As=attenuation factor of the standard
attenuator in the noise source arm.

Manuscript received April 22,
August 3, 1965.

1 The exact form of (1) and others similar in this
correspondence is

Ny, — kT,
N ={(———
LA,
However, usually No>3>kTo.

.. 2 Allnoise powers N is this correspondence are con-
sidered as noise powers in unity bandwidth.
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