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of operation. This is done so that there will

be minimal radiation loss via such a parallel

plate mode in the region of coupling between

closed rectangular waveguide and the open

groove guide structure. The second step

consists of increasing this dimension from
the reduced value to the final value for the
groove guide design. It should be noted that
the plate separation in the groove region is
equal to the wide dimension of rectangular
waveguide. This was done solely as a matter

of convenience.

Standard laboratory measurements of

transducer insertion loss and input \7S\VR
have been made, utilizing a sliding short in

groove guide and substitution techniques,

and the results are showm in Fig. 2. The
physical length of the transducer, which was

not optimized, accounts for approximately
0,2 dB of the insertion loss. It is felt, there-

fore, that a more efficient coupling design

would reduce the coupling length (now ap-
proximately 20 wavelengths) by a factor of

two and thereby reduce the insertion loss to
a value below 0.2 dB over the entire fre-

quency range. Thus, the transducer insertion
10SS would be equivalent to less than six

inches of rectangular waveguide operating
in the same frequency range.

It has been shown [1 ]– [5 ] that the dis-

persion relation for groo>-e guide has the
familiar form

where

where kuA is the y-directed ll-avenumber in
the groove region and I kVB I is the y-directed
wavenuraber in the outer region giving the
decay rate in nepers per unit length (in y).

Now k,., and/or IklLIl are determined by
the transverse procedure for a structure with

specific dimensions. An experimental con-
firmation of the approximate theory was

obtained for the case u/b = 3 using a groove
guide tunable reaction type cavity having
b =0.2800 inch and b’=0.270 inch and a
plate width of approximately .5 inches.

The cavity was excited by a capacitive
iris in a transverse shorting plate at the
input end and terminated in a shorting plate

whose longitudinal position could be ad-

justed. The guide wavelength at any fre-

quency was determined by measuring the
distance between successive resonant posi.

tions of the tunable short. In Table I various
values of guide wavelength are compared at
a number of frec[uencies. The first two
columns of guide wavelength permit a com-
parison of the measured values with those
theoretically calculated. In the last column
are predicted values of & for a parallel plate
mode if it were to exist rather than the
bound groove guid,e mode. It is easily seen
that the measured values of guide wave-

CORRESPONDENCE

&
Fig. 1. Rectan.qular to Zroove guide transducer.

I / 1~

FREQuENCY (G, )

Fig. 2. Transducer performance.

TABLE I

Measured Calculated Calculated
f(Gc/s) ~u(mches) X,, (mcheq) Xu(mches)

G.G. G.G. P.P.

27,6.2
28.82
30.02
31.96
33.90
35.86
38.00

0 6803
0 6156
0.56.22
0 5002
0 4492
0 4092
0.3774

0,6763
0.6117
0,5608
0.4974
0..4490
0.4102
0 3759

0.7055
0 6330
0.5771
0.5086
0.4572
0.4165
0.3807

— THEORETICAL
0 EXPERIMENTAL

i

- ESTIMATED EXPERIMENTAL
ACCURACY

ETHEORETICAL ATTENUATION
CURVE FOR BRASS RG 96/U

THEORETICAL ATTENUATION
W~VEE FOR BRASS GROOVE

,, II B ]b’ @
ECCOSOR8

o*” 20 40 ,REQUENCY(GC)
1 I I I 1 ! 1 ( 1

60 80100

Fig. 3. Attenuation vs. frequency; groove guide no. 2
(machined brass); (a =0.140 inch, b =0.280 inch,
b’=0.250 inch, d =5.o inch).

length correspond to the predicted values

for groove guide and at the same time differ
greatly from the values predicted for parallel
plate guide.

The attenuation constant w-as measured

using the groove guide sliding short and
substitution. The groove guide under
measurement was fabricated from machined

brass and is shown in Fig. 3 with the experi-
mental results.
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Field Equations in Cylindrical

Coordinates for Gyroelectric

Media with Sources

For a gyroelectric medium characterized
by a tensorial relative permittivity of the
form

- A’ll jK12 O—

1

h;= –jh’,~ KI1 O 1
00 KSSJ

iLfaxwell’s equations may be written as

v xE=J2e2z. +7t, +j@eoI”. z

v X ~ =J.&+~tm —ja,aa~

where both electric and magnetic currents,
designated by subscripts e and fiz, respec-
tively, have been included. The currents
have been separated into 1ongitudinal and

transverse components, designated by ~3ub-
script z and t, respectively, with & repre-

sent ug a unit vector in the longitudinal

direction. Throughout it is assumed that

the fields and the currents have a time and

z variation of the form

exp (jrd — -YZ).

Through the use of vector and tensor
algebra, these two equations can be reduced
to a set of wave equatious which arc in
general coupled [1]. In matrix form they

can be written as

V,2F + AF = J. (1)

F and ~ are both two-dimensional vectors

“=[:1 J=[;]
.-1 is a 2X2 matrix having elements a,,, al!,

a~l, and a~~; and vi is the transverse pal-t Of
the del operator

Vt=v–; tlz.

Defining

koz = C02M0

klp = – ko2Km

and

k2 = 72 + kc?~”u

Manuscnpt received March 19, 1965; revised
August 3, 1965.
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then

all = kzKZ~/K1l

a12 = —sdALoTK12/KII

azl =coeryKI~KM/KII

azz = k2+k1=K1~/K11.

The currents y, and J, are divided into
two parts, one part arising from the lon-
gitudinal currents and the other part from

the transverse currents

JI = 71= + Jlt

where

Similarly

Jz = Jt. + J2~

where

Jz. = — ~ [a.J.~ + al.J..]
@fro

and

[

A“lz –
JZt = V6. –

Y– 1z&x Jte —.i–-J+i+i — Jim .
KII Wa

The transverse fields can be expressed in
terms of the longitudinal fields and trans-

verse currents as follows:

Et = (k, j k,,, {v,(–-/k2Ez – wok,’~z)

+ y%. X V,(-/k,zEg + qqk2Hz)

+ Z, X (-/k2~,m+ wok,’~,.)

+ -i(wok.21,, + -@,27,m) } (2a)

Zt = *Y {v,(–~k21L + -&oK&)

+ jtz, X V,[Tk12H, – coeo(k12K12

+ k2Ku)E.1

+ a, X (~k’~t, – mcoT’KIz7tm)

+ j[kl’~7t, – COeO(k12K12

+ k2K11)~fm]] ~ (2b)

If a,~ = a~l = O then (1) represents two

uncoupled equations which can be solved
for E. and H.; these expressions for E. and

H. can be used in (2a) and (2b) to determine
the transverse fields. The matrix elements

ulz and an are both zero if Jflz=O or ~ =0.
If a,j and azl are not both zero, then (1)

can be uncoupled by a suitable linear trans-
formation of the form

F=TU (3)

where T is a 2 X 2 matrix and U is a two-

dimensional vector.
Substituting (3) into (1) and premulti-

plying by T-l gives

VtZ&lTU + T–lATU = T-lJ.

Using the theory of similarity trans-
formations, it is possible to find a matrix T
which will diagonalize the matrix A, giving

P’A T = D(p,a, p,’)

where @IZ and P92 are two solutions of the
characteristic equation of A

det (A – P’1) = O. (4)

Making such a transformation (1) becomes

V,ZU + Z@z, },2) u = ~lJ. (5)

Solutions of (4) are availabl~in the literature
in terms of the elements of Z [2].

If neither a,, nor az, are zero, and if

PP#PZ2, then an appropriate matrix T,
giving the same transformation used by
Kales [3] in a similar derivation for a source

free ferrite, is

r
(pl’ – a22)p12 (p22 – a2~)p22

T=
1

1
a21 ajl

P12 P22 J

the inverse of which is

r

a~~ (Pz’ – a22)

T-1 =
pl’(pl’ – 92’) jl’(j,’ – j,’)

1

1
agl

1
p12– a22 “

N(p,’ – h’) IM(p,’ – )2’)

The longitudinal fields are now obtain-
able from the solutions of (5) through the

use of (3). The transverse field expressions
written in terms of the solutions of (.5) and

the transverse currents are

1
E, = — V,[(k’ – PI’) U, + (k’ – jzz) U,]

coeoK12

+ lWolL x V,(U1 + u,)

1

+ k4 – k,4
[a. X (ykz~ina+ copoklz~i.)

+ j(wokz~te+ A’rtm) }

Z7f= – W,(UI + U2) –/& %

X V,[(P1’ – a22)UI+ (h’ – u22) U2]

1
— {ZL X (Yk2~,, – WW2K,,~,m)+ k4 – k14

+ jlk12T~te – CJ~0(~12~12 + kz~n)~trn] ] .

Making a transformation from a gyro-

electric medium to a gyromagnetic medium

the equations presented here reduce to those

obtained by Rosenbaum and Coleman [4]

for a ferrite containing longitudinal electric

currents only.
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On the Superheterodyne Method

of Microwave Noise Measurements

One of the frequently used methods in

microwave oscillator noise measurements is
the superheterodyne method. This corre-

spondence is not intended to describe this
method in detail, but to call attention to the

possibility of pointing out one measurement
error. Every one who is interested in micro-

wave oscillator measurements can find
fundamental information given in [1].

The superheterodyne method is assumed
to be a substitution method, and therefore
it is not necessary to know the mixer crystal
noise [I ], [2 ]. It will be shown that some

conditions have to be fulfilled if the super-
heterodyne method is to become a sub-

stitution method which gives correct values
of the oscillator noise power.

Fig. 1. Schematic diagram of the $uperheterodyne
method noise measuring clrcult.

The schematic diagram of the noise
measuring equipment is given in Fig. 1.

When the oscillator under testisconnected

to the input of the superheterodyne re-
ceiver [case (a) ], it produces a reading on

the output meter

N, = (& +N., +AL)G (1)1,2
c

where

No= noise power of the oscillator under
test

N., = noise power contributed by the
mixer crystals for the case (a)

N== noise power contributed by the IF
amplifier

G.= amplifier gain
L.= conversion loss of mixer crystals
A I = attenuation factor of the standard

attenuator in the oscillator arm.

When the tested oscillator is removed and

a known amount of noise from the noise
source is added [case (b)] the reading is

N, =
( )

:;+ N,, + N. G. (2)
c

where

N,, = output noise power of the noise
source

NC, = noise power contributed by the
mixer crystals for case (b)

A z= attenuation factor of the standard
attenuator in the noise source arm.

Manuscript received April 22, 1965; revised
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I The exact form of (1) and others similar in this
correspondence is

(
No – kTo

N=
)

+ N, + N. Ga,
LCA ~

However, usually N.>>kTo.
2 All noise powers N is this correspondence are con-

sidered as noise powers in umty bandwidth.


